domingo, 29 de marzo de 2015

Grandes rocas viajando por el espacio

Fuente: astromia

La palabra meteorito significa fenómeno del cielo y describe la luz que se produce cuando un fragmento de materia extraterrestre entra a la atmosfera de la Tierra y se desintegra.

Fuente: taringa
La palabra meteoroide se aplica a la propia partícula, sin hacer referencia al fenómeno que se produce cuando entra a la atmosfera. Hay muchísimos meteoroides y pocos meteoritos. Algunos de los meteoritos que se han estudiado parece que venían de la Luna y otros de Marte. La mayoría, sin embargo, son fragmentos de asteroides o de cometas.

También hay corrientes de meteoroides, que se han formado por la desintegración de núcleos de cometas. Cuando coinciden con la Tierra se origina una lluvia de meteoritos (o, si es muy intensa, una tempestad) que puede durar unos cuantos días.
Cada día entran en la atmósfera terrestre una gran cantidad de meteoroides, varios cientos de toneladas de materia. Pero la mayoría son muy pequeños. Sólo los grandes alcanzan la superficie para convertirse en meteoritos. El mayor meteorito encontrado (Hoba, en Namibia) pesa 60 toneladas.

Los meteoroides entran en la atmósfera a una velocidad media que oscila entre 10 y 70 km/s. Los pequeños y medianos se frenan rápidamente hasta unos cientos de km/hora debido a la fricción, y cuando caen a tierra (si llegan) lo hacen con poca fuerza. Solamente los grandes conservan la velocidad suficiente para dejar un cráter.

Hay tres clases de meteoritos: los litosideritos estan formados por materiales rocosos y hierro. Constituyen apenas un uno por ciento de los meteoritos. Los meteoritos rocosos, formados solamente por rocas, son los más abundantes. Los meteoritos ferrosos, un 6% del total, contienen gran cantidad de hierro.

El estudio de meteoritos revela datos interesantes. Son buenos ejemplos de la materia primitiva del Sistema Solar, aunque en algunos casos sus propiedades han sido alteradas.

El único hierro que conocían los humanos antes de inventar la forja provenía de los meteoritos. Los minerales terrestres que contienen hierro no tienen resistencia. El hierro extraterrestre nos puso en la pista de la metalúrgia.

Algunas catástrofes del pasado pueden haber sido causadas por meteoritos, como la extinción de los dinosaurios del Cretaceo, hace 65 millones de años, provocada por la caída de un meteorito de unos 10 Km. de diámetro. O, al menos, así lo creen algunos astrónomos.

domingo, 22 de marzo de 2015

¿Existen los agujeros negros?

Fuente: astromia

Los llamados agujeros negros son cuerpos con un campo gravitatorio muy grande, enorme. No puede escapar ninguna radiación electromagnética ni luminosa, por eso son negros. Están rodeados de una "frontera" esférica que permite que la luz entre pero no salga.
Fuente: astromia

Hay dos tipos de agujeros negros: cuerpos de alta densidad y poca masa concentrada en un espacio muy pequeño, y cuerpos de densidad baja pero masa muy grande, como pasa en los centros de las galaxias.

Si la masa de una estrella es más de dos veces la del Sol, llega un momento en su ciclo en que ni tan solo los neutrones pueden soportar la gravedad. La estrella se colapsa y se convierte en agujero negro.

Stephen Hawking y los conos luminosos

El científico británico Stephen W. Hawking ha dedicado buena parte de su trabajo al estudio de los agujeros negros. En su libro Historia del Tiempo explica cómo, en una estrella que se está colapsando, los conos luminosos que emite empiezan a curvarse en la superficie de la estrella
Al hacerse pequeña, el campo gravitatorio crece y los conos de luz se inclinan cada vez más, hasta que ya no pueden escapar. La luz se apaga y se vuelve negro.

Si un componente de una estrella binaria se convierte en agujero negro, toma material de su compañera. Cuando el remolino se acerca al agujero, se mueve tan deprisa que emite rayos X. Así, aunque no se puede ver, se puede detectar por sus efectos sobre la materia cercana.

Los agujeros negros no son eternos. Aunque no se escape ninguna radiación, parece que pueden hacerlo algunas partículas atómicas y subatómicas.

Alguien que observase la formación de un agujero negro desde el exterior, vería una estrella cada vez más pequeña y roja hasta que, finalmente, desaparecería. Su influencia gravitatoria, sin embargo, seguiría intacta.
Como ocurrió en el Big Bang, también en los agujeros negros se da una singularidad, es decir, las leyes físicas y la capacidad de predicción fallan. En consecuencia, ningún observador externo, si lo hubiese, podría ver qué ocurre dentro.

Las ecuaciones que intentan explicar una singularidad, como la que se da en los agujeros negros, han de tener en cuenta el espacio y el tiempo. Las singularidades se situarán siempre en el pasado del observador (como el Big Bang) o en su futuro (como los colapsos gravitatorios), pero nunca en el presente. Esta curiosa hipótesis se conoce con el nombre de censura cósmica.

domingo, 15 de marzo de 2015

Contelaciones

Fuente: astromia

Las estrellas que se pueden observar en una noche clara forman determinadas figuras que llamamos "constelaciones", y que sirven para localizar más fácilmente la posición de los astros. En total, hay 88 agrupaciones de estrellas que aparecen en la esfera celeste y que toman su nombre de figuras religiosas o mitológicas, animales u objetos. Este término también se refiere a áreas delimitadas de la esfera celeste que comprenden los grupos de estrellas con nombre.
Fuente: bitacoradegalileo

Los dibujos de constelaciones más antiguos que se conocen señalan que las constelaciones ya habían sido establecidas el 4000 a.C. Los sumerios le dieron el nombre a la constelación Acuario, en honor a su dios An, que derrama el agua de la inmortalidad sobre la Tierra. Los babilonios ya habían dividido el zodíaco en 12 signos iguales hacia el 450 a.C.
Las actuales constelaciones del hemisferio norte se diferencian poco de las que conocían los caldeos y los antiguos egipcios. Homero y Hesíodo mencionaron las constelaciones y el poeta griego Arato de Soli, dio una descripción en verso de 44 constelaciones en su Phaenomena. Tolomeo, astrónomo y matemático griego, en el Almagesto, describió 48 constelaciones, de las cuales, 47 se siguen conociendo por el mismo nombre.

Muchos otras culturas agruparon las estrellas en constelaciones, aunque no siempres se corresponden con las de Occidente. Sin embargo, algunas constelaciones chinas se parecen a las occidentales, lo que induce a pensar en la posibilidad de un origen común.

A finales del siglo XVI, los primeros exploradores europeos de los mares del Sur trazaron mapas del hemisferio austral. El navegante holandés Pieter Dirckz Keyser, que participó en la exploración de las Indias orientales en 1595 añadió nuevas constelaciones. Más tarde fueron añadidas otras constelaciones del hemisferio sur por el astrónomo alemán Johann Bayer,que publicó el primer atlas celeste extenso.

Muchos otros propusieron nuevas constelaciones, pero los astrónomos acordaron finalmente una lista de 88. No obstante, los límites de las constelaciones siguieron siendo tema de discusión hasta 1930, cuando la Unión Astronómica Internacional fijó dichos límites.
Para designar las aproximadamente 1.300 estrellas brillantes, se utiliza el genitivo del nombre de las constelaciones, precedido por una letra griega; este sistema fue introducido por Johann Bayer. Por ejemplo, a la famosa estrella Algol, en la constelación Perseo, se le llama Beta Persei.

Entre las constelaciones más conocidas se hallan las que se encuentran en el plano de la órbita de la Tierra sobre el fondo de las estrellas fijas. Son las constelaciones del Zodíaco. Ademas de estas, algunas muy conocidas son Cruz del Sur, visible desde el hemisferiosur, y Osa Mayor, visible desde el hemisferio Norte. Estas y otras constelaciones permiten ubicar la posición de importantes puntos de referencia como, por ejemplo, los polos celestes.
La mayor constelación de la esfera celeste es la de Hydra, que contiene 68 estrellas visibles a simple vista. La Cruz del Sur, por su parte, es la constelación más pequeña.

domingo, 8 de marzo de 2015

Los eclipses...

Fuentes: astromia

Un eclipse solar consiste en el oscurecimiento total o parcial del Sol que se observa desde un planeta por el paso de un satélite, como por ejemplo el paso de la Luna entre el Sol y la Tierra. Un eclipse de Sol sólo es visible en una estrecha franja de la superficie de la Tierra. Cuando la Luna se interpone entre el Sol y la Tierra, proyecta sombra en una determinada parte de la superficie terrestre, y un determinado punto de la Tierra puede estar inmerso en el cono de sombra o en el cono de penumbra.

Fuente: taringa
Aquellos que se encuentren en la zona en la cual se proyecta el cono de sombra verán el disco de la Luna superponerse íntegramente al del Sol, y en este caso se tendrá un eclipse solar total. Quienes se encuentren en una zona interceptada por el cono de penumbra, verán el disco de la Luna superponerse sólo en parte al del Sol, y se tiene un eclipse solar parcial.

Se da también un tercer caso, cuando la Luna nueva se encuentra en el nodo a una distancia mayor con respecto a la media, entonces su diámetro aparente es más pequeño con respecto al habitual y su disco no alcanza a cubrir exactamente el del Sol. En estas circunstancias, sobre una cierta franja de la Tierra incide no el cono de sombra sino su prolongación, y se tiene un eclipse solar anular, pues alrededor del disco lunar queda visible un anillo luminoso.

Según se produzca una de estas situaciones en los eclipses, se habla de zonas de totalidad, de parcialidad o de anularidad, haciendo referencia con ello al tipo de eclipse que se puede observar desde cualquier punto de la superficie terrestre. A causa del movimiento de la Luna alrededor de la Tierra y del movimiento de la Tierra alrededor de sí misma, la sombra de la Luna sobre la superficie terrestre se mueve a unos 15 km/s. La fase de totalidad para un determinado punto geográfico no supera por tanto los ocho minutos. Esta zona puede tener anchura y longitud máxima de 200 y 15.000 km respectivamente.

Un eclipse lunar consiste en el paso de un satélite planetario, como la Luna, por la sombra proyectada por el planeta, de forma que la iluminación directa del satélite por parte del Sol se interrumpe. Tienen lugar únicamente cerca de la fase de luna llena, y pueden ser observados desde amplias zonas de la superficie terrestre, particularmente de todo el hemisferio que no es iluminado por el Sol, siempre que la Luna esté por encima del horizonte.

domingo, 1 de marzo de 2015

¿Se mueven las estrellas?

Fuente: feinstein


En realidad, todas las estrellas se mueven. La aparente invariabilidad de la forma de las constelaciones es producto de la enorme distancia que nos separa de las estrellas, algo que hace inapreciable su movimiento a simple vista y que sólo pueda percibirse comparando observaciones separadas por largos períodos de tiempo, décadas o centurias.
Fuente: elmundo

Edmund Halley determinó por primera vez en 1718 el movimiento de las estrellas, comparando las posiciones de tres estrellas muy brillantes: Arturo, Proción y Sirio, dadas por Ptolomeo (85-165 d.C.) en el famoso Almagesto, con las que él mismo había medido. Encontró que ellas habían variado de posición en relación con las estrellas vecinas poco brillantes: la diferencia que halló fue de 1° para Arturo y 0,5° para Sirio.

Movimiento propio
El desplazamiento aparente de las estrellas en el cielo se designa como movimiento propio y se indica en segundos de arco por año ("/año).

Si se comparan dos fotografías de la misma región del cielo, obtenidas con un intervalo de unos 50 años o más, es relativamente sencillo comprobar y medir los diversos movimientos de las estrellas en sentido perpendicular a la visual. Es evidente que este movimiento propio es el desplzamiento en el espacio de la estrella proyectada en el cielo.

Los movimientos propios son, en general, muy pequeños; la enorme mayoría de las estrellas tienen movimientos propios del orden de 0,001"/año, salvo algunas poces estrellas con algo más de 1"/año. Un caso muy particular es la llamada estrella de Barnard que presenta un movimiento propio de 10,25"/año, que equivale a 1° cada 350 años.

Velocidad radial
La velocidad radial es la componente de la velocidad de la estrella en el sentido de la visual dirigida a la misma.

La medición de las velocidades radiales se realiza mediante el análisis del espectro de las estrellas; las líneas espectrales de los elementos de la serie periódica que aparecen en él se desplazan hacia el azul o hacia el rojo según que la fuente luminosa se acerque o se aleje del observador (efecto Doppler).

Por otra parte, ese desplazamiento de las líneas en el espectro es proporcional a la velocidad de la fuente, lo cual permite determinar la velocidad radial de una estrella midiendo el corrimiento de las líneas de su respectivo espectro. La medida se reduce a obtener el espectro de la estrella superpuesto a un espectro de comparación de una fuente terrestre. Si en el espectro estelar se mide el desplazamiento, mediante la expresión del efecto Doppler encontramos que:

la velocidad radial es igual al producto de la velocidad de la luz c multiplicada por el desplazamiento de la longitud de onda de esa misma línea con respecto a la posición normal de la línea en un espectro de referencia determinado en un laboratorio terrestre.
El valor resulta dado en las mismas unidades que la velocidad de la luz c, y generalmente se lo indica en kilómetros por segundo. Puede ser de acercamiento (con signo negativo) o de alejamiento (con signo positivo), según que las líneas espectrales se hayan corrido hacia el azul o bien hacia el rojo.

Se han medido las velocidades radiales de muchos miles de estrellas, las cuales oscilan entre 0 y 400 km/seg, medidas expresadas con relación al Sol; sin embargo, la mayoría de las estrellas tiene velocidades comprendidas entre 10 y 40 km/seg y son raras aquellas que presentan una velocidad radial superior a los 100 km/seg.

Además de completar la descripción del movimiento de las estrellas, la velocidad radial permite acceder a otro tipo de información respecto de las características físicas de estos astros.

Veamos algunos ejemplos. En el caso de las estrellas dobles, la velocidad radial del sistema presenta variaciones periódicas que ponen en evidencia sus movimientos orbitales. De la misma manera, en ciertas estrellas variables llamadas pulsantes la variación de la velocidad radial se origina a causa de la expansión y contracción de su superficie.

Velocidad espacial
El movimiento de las estrellas se realiza en tres dimensiones. El llamado movimiento propio es perpendicular a la visual, con el cual puede determinarse la velocidad tangencial de la estrella, si se conoce la distancia a la que se encuentra la estrella, y además, se acercan o se alejan del observador, desplazamientos que se miden a través de la denominada velocidad radial.

El desplazamiento total de una estrella se calcula sobre la base de sus velocidades radial (Vr) y tangencial (Vt), componiendo ambas mediante la regla del paralelogramo. La composición de dichas velocidades se conoce como velocidad espacial de la estrella (Ve) y se expresa como:

Ve2 = Vr2 +Vt2
La Ve que resulta es la velocidad espacial relativa de la estrella con respecto al observador; para obtener la velocidad absoluta se debe restar la velocidad del observador.

La dirección del movimiento de la estrella se deduce geométricamente de la razón entre sus velocidades radial y tangencial; puede estimarse además por el ángulo que forma la velocidad espacial con la dirección de la visual.

Sirio, la estrella más brillante del cielo tiene una velocidad radial de -8 km/seg.

El astrónomo J.H. Oort descubrió en 1927 que las velocidades radiales de las estrellas evidencian un efecto producto de la rotación de la galaxia. Como las estrellas situadas entre el Sol y el centro galáctico se mueven más rápidamente, para un observador situado en el Sol (o en la Tierra), aquella que todavía no alcanzó al Sol tiene Vr negativa (es decir, se acerca). Sucede lo contrario con las estrellas que se desplazan externamente al Sol; como se mueven más lentamente, aquella que todavía no ha sido alcanzada por el Sol tiene Vr negativa (es decir, se acerca), y finalmente la estrella que quedó atrás tiene Vr positiva (se aleja). Las estrellas que están a la misma distancia que el Sol del centro galáctico parecerían estar en reposo; todo esto con referencia exclusiva al movimiento de rotación de nuestra galaxia.

Ahora bien, por otra parte, en la mayoría de las galaxias se observa un corrimiento al rojo intrínseco (es decir, una velocidad radial positiva), el cual aumenta uniformemente con la distancia, un tema que trae aparejado complejas cuestiones cosmológicas.