domingo, 3 de mayo de 2015

¿Tiene fin el universo?

Fuente: astrored

¿Cómo morirá el universo? El mero hecho de intentar responder a esta pregunta, que es la cuestión definitiva de la cosmología, excede a los límites de los conocimientos actuales. Sin embargo, la búsqueda de una solución a este intrincado asunto ha desafiado y reformado, en los últimos 20 años, muchas de nuestras ideas fundamentales sobre el cosmos. No hace mucho, el destino del universo parecía relativamente claro, y había tres posibles resultados. El escoger el acertado era, simplemente, cuestión de afinar en los cálculos.
Fuente: taringa

La solución más ampliamente aceptada quizá era que el mundo terminaría en un Big Crunch, o “Gran Implosión”, donde menguaría la tasa de expansión y empezaría a dominar la gravedad. La expansión se invertiría entonces y, a lo largo de muchos miles de millones de años, las galaxias y los cúmulos de galaxias irían acercándose poco a poco. Conforme se comprimiera, también se calentaría hasta que, finalmente, todo se descompondría en una sopa de partículas parecida a la que se produjo con el Big Bang, y el universo volvería a la singularidad de la que surgió.

La teoría del Big Crunch tiene el atractivo de que es un final pero, al tiempo, abre la posibilidad de una continuidad: tal implosión podría dar lugar a un nuevo Big Bang y a todo un universo nuevo. Este ciclo podría haberse producido ya muchas veces atrás, antes de dar lugar a nuestro cosmos particular que conocemos.

Las otras dos opciones eran, en definitiva, variaciones sobre el mismo tema. La expansión del universo podría ser demasiado potente como para que la gravedad pudiera siquiera aminorar su marcha, o las cosas podrían estar tan equilibradas que la expansión se ralentizaría poco a poco hasta hacerse casi nula, pero el universo no llegaría nunca a contraerse. Cualquiera de los dos escenarios condena al universo a un “Big Chill”, o “Gran Enfriamiento”, en donde conforme la materia del cosmos se dispersa y escasea el material para la formación de estrellas, la luz del universo se debilita hasta apagarse y lo único que queda es una larga eternidad fría.

domingo, 26 de abril de 2015

¿Hay gravedad en el espacio?

Fuente: Universocuantico

A pesar de lo que se suele pensar, los astronautas que solemos ver están en una región del espacio donde sí hay gravedad (de hecho, como la Estación Espacial está a tan solo 400 km de altura, no tienen una gravedad muy diferente a la nuestra).

Fuente: eltamiz
Sin embargo, ésta no se nota. Esto sucede porque los astronautas están en una continua caída libre, en una situación similar a la que experimentarías si estuvieras en un ascensor y se rompiesen los cables.

En estas situaciones (o cuando te tiras de un avión por ejemplo), sigue existiendo la misma gravedad (ya que ésta es originada por la Tierra), pero no la sientes debido a que al estar cayendo con una aceleración igual a la de la gravedad, sobre tí (y solo sobre tí, si hubiera una persona al lado tuyo pero que no cae sentiría perfectamente la gravedad) aparentemente no existe ninguna fuerza neta.

En el caso del astronauta, esta fuerza que parece compensar a la de la gravedad es la fuerza centrífuga, la cual, por estar dando vueltas alrededor de la Tierra, experimentas que te empuja hacia “afuera”. Y dado que a su vez tienes a la gravedad de la Tierra que te empuja hacia “abajo”, el resultado es que no sientes ninguna fuerza.

A esta sensación de no gravedad cuando en realidad sí que hay, se le denomina ingravidez.

Regiones sin gravedad

En ocasiones, el argumento anterior puede hacer pensar que en el espacio siempre hay gravedad entonces. Pero esto tampoco es cierto.

La gravedad que genera un cuerpo (como la Tierra) disminuye con la distancia a dicho cuerpo, por lo que suficientemente lejos, no experimentaremos una gravedad apreciable.

Por ejemplo, entre la Luna y la Tierra, hay un punto donde la gravedad de éstas se compensa, obteniendo un lugar donde aproximadamente no existe gravedad.
Claro que a medida que nos alejamos de estos cuerpos, tenemos que considerar a otros objetos.
Si nos situámos entre las órbitas de la Tierra y Marte, con estos dos planetas suficientemente lejos, pensaríamos que la gravedad sería cero. Sin embargo, esto no es así porque nos estábamos olvidando al Sol, el mayor cuerpo del Sistema Solar, y que es el que atrae gravitatoriamente a todos los planetas, incluídos a nosotros en ese punto.
Si nos alejamos del Sistema Solar, predomina la gravedad de otras estrellas, o de la propia Galaxia.

Luego, lo difícil es estar en un lugar donde la gravedad sea estrictamente cero.

domingo, 19 de abril de 2015

Materia oscura

Fuente: principiamarsupia

La “materia oscura” constituye el 85% de toda la materia de nuestro Universo. Sin embargo, aunque sabemos que existe, hasta ahora no habíamos podido detectarla. Comprender la naturaleza de la materia oscura constituye uno de los grandes “problemas sin resolver” de la Física.
En un artículo científico que se publica hoy en Monthly Notices of the Royal Astronomical Society, un equipo de astrónomos anuncia lo que podría ser la primera detección de materia oscura.
Fuente: .educacioncontracorriente

(Nota: no confundir “materia oscura” con “energía oscura” ni con “anti-materia”. Son tres conceptos diferentes. En este post sólo hablamos de “materia oscura”).

¿Por qué es tan difícil observar la materia oscura?

La materia oscura no emite ni absorbe luz, por lo tanto, es imposible verla. (Y de ahí lo de “oscura”).

¿Cómo sabemos que la materia oscura existe si no podemos verla?

Aunque no podamos verla, sabemos que la materia oscura existe por los efectos que provoca. La materia oscura ejerce atracción gravitatoria sobre la materia que sí podemos ver.

Por ejemplo: las galaxias en espiral giran más rápido de lo que deberían si la única materia que existiese en ellas fuese la materia de sus estrellas.

Existen varias otras evidencias de que la materia oscura existe: lentes gravitacionales, ciertas fluctuaciones en el Fondo Cósmico de Microondas, etc.

¿De qué está compuesta la materia oscura?

La materia “visible”, es decir, la materia que vemos a nuestro alrededor está formada por átomos (protones y neutrones).

Todavía no sabemos qué compone la materia oscura, pero la evidencia parece indicar que NO está formada por protones y neutrones sino por algún tipo diferente de partículas.

Existen diferentes propuestas teóricas sobre las partículas que componen la materia oscura: las más conocidas son los llamados “axiones” y las “partículas supersimétricas”.

Al principio del post decíamos que hoy anuncia la posible primera detección de materia oscura. ¿En qué consiste el experimento?

El astrónomo George Fraser y su equipo estaban estudiando los rayos X que provienen del Sol y detectaron ligeras variaciones en la cantidad de esta radiación según la posición del telescopio.

Ningún fenómeno conocido parece explicar esas variaciones y Fraser ha propuesto que quizás se deben a unas partículas de materia oscura conocidas como “axiones”.

Los axiones se producirían en el Sol, viajarían por el espacio hasta chocar con el campo magnético terrestre cuando se convertirían en rayos X.

¿Este resultado es definitivo?

No, todavía hay que realizar muchos más análisis para confirmar que las variaciones de rayos X corresponden a partículas de materia oscura.

Como con cualquier otro descubrimiento científico, serán necesarios otros experimentos independientes para que podamos asegurar que George Fraser y su equipo fueron los primeros en detectar materia oscura.

domingo, 12 de abril de 2015

Nubes espaciales

Fuente: Astromia

Las nebulosas son estructuras de gas y polvo interestelar. Según sean más o menos densas, son visibles, o no, desde la Tierra.
Fuente: veoveoqueves

Las nebulosas se puede encontrar en cualquier lugar del espacio interestelar. Antes de la invención del telescopio, el término nebulosa se aplicaba a todos los objetos celestes de apariencia difusa. Como consecuencia de esto, a muchos objetos que ahora sabemos que son cúmulos de estrellas o galaxias se les llamaba nebulosas.

Se han detectado nebulosas en casi todas las galaxias, incluida la nuestra, la Vía Láctea. Dependiendo de la edad de las estrellas asociadas, se pueden clasificar en dos grandes grupos:

1.- Asociadas a estrellas evolucionadas, como las nebulosas planetarias y los remanentes de supernovas.

2.- Asociadas a estrellas muy jóvenes, algunas incluso todavía en proceso de formación, como los objetos Herbig-Haro y las nubes moleculares.

Clasificación de las nebulosas según su luz:

Si se atiende al proceso que origina la luz que emiten, las nebulosas se pueden clasificar en:

Las nebulosas de emisión, cuya radiación proviene del polvo y los gases ionizados como consecuencia del calentamiento a que se ven sometidas por estrellas cercanas muy calientes. Algunos de los objetos más sorprendentes del cielo, como la nebulosa de Orión, son nebulosas de este tipo.

Las nebulosas de reflexión reflejan y dispersan la luz de estrellas poco calientes de sus cercanías. Las Pléyades de Tauro son un ejemplo de estrellas brillantes en una nebulosa de reflexión.

Las nebulosas oscuras son nubes poco o nada luminosas, que se representan como una mancha oscura, a veces rodeada por un halo de luz. La razón por la que no emiten luz por sí mismas es que las estrellas se encuentran a demasiada distancia para calentar la nube. Una de las más famosas es la nebulosa de la Cabeza de Caballo, en Orión. Toda la franja oscura que se observa en el cielo cuando miramo

domingo, 29 de marzo de 2015

Grandes rocas viajando por el espacio

Fuente: astromia

La palabra meteorito significa fenómeno del cielo y describe la luz que se produce cuando un fragmento de materia extraterrestre entra a la atmosfera de la Tierra y se desintegra.

Fuente: taringa
La palabra meteoroide se aplica a la propia partícula, sin hacer referencia al fenómeno que se produce cuando entra a la atmosfera. Hay muchísimos meteoroides y pocos meteoritos. Algunos de los meteoritos que se han estudiado parece que venían de la Luna y otros de Marte. La mayoría, sin embargo, son fragmentos de asteroides o de cometas.

También hay corrientes de meteoroides, que se han formado por la desintegración de núcleos de cometas. Cuando coinciden con la Tierra se origina una lluvia de meteoritos (o, si es muy intensa, una tempestad) que puede durar unos cuantos días.
Cada día entran en la atmósfera terrestre una gran cantidad de meteoroides, varios cientos de toneladas de materia. Pero la mayoría son muy pequeños. Sólo los grandes alcanzan la superficie para convertirse en meteoritos. El mayor meteorito encontrado (Hoba, en Namibia) pesa 60 toneladas.

Los meteoroides entran en la atmósfera a una velocidad media que oscila entre 10 y 70 km/s. Los pequeños y medianos se frenan rápidamente hasta unos cientos de km/hora debido a la fricción, y cuando caen a tierra (si llegan) lo hacen con poca fuerza. Solamente los grandes conservan la velocidad suficiente para dejar un cráter.

Hay tres clases de meteoritos: los litosideritos estan formados por materiales rocosos y hierro. Constituyen apenas un uno por ciento de los meteoritos. Los meteoritos rocosos, formados solamente por rocas, son los más abundantes. Los meteoritos ferrosos, un 6% del total, contienen gran cantidad de hierro.

El estudio de meteoritos revela datos interesantes. Son buenos ejemplos de la materia primitiva del Sistema Solar, aunque en algunos casos sus propiedades han sido alteradas.

El único hierro que conocían los humanos antes de inventar la forja provenía de los meteoritos. Los minerales terrestres que contienen hierro no tienen resistencia. El hierro extraterrestre nos puso en la pista de la metalúrgia.

Algunas catástrofes del pasado pueden haber sido causadas por meteoritos, como la extinción de los dinosaurios del Cretaceo, hace 65 millones de años, provocada por la caída de un meteorito de unos 10 Km. de diámetro. O, al menos, así lo creen algunos astrónomos.

domingo, 22 de marzo de 2015

¿Existen los agujeros negros?

Fuente: astromia

Los llamados agujeros negros son cuerpos con un campo gravitatorio muy grande, enorme. No puede escapar ninguna radiación electromagnética ni luminosa, por eso son negros. Están rodeados de una "frontera" esférica que permite que la luz entre pero no salga.
Fuente: astromia

Hay dos tipos de agujeros negros: cuerpos de alta densidad y poca masa concentrada en un espacio muy pequeño, y cuerpos de densidad baja pero masa muy grande, como pasa en los centros de las galaxias.

Si la masa de una estrella es más de dos veces la del Sol, llega un momento en su ciclo en que ni tan solo los neutrones pueden soportar la gravedad. La estrella se colapsa y se convierte en agujero negro.

Stephen Hawking y los conos luminosos

El científico británico Stephen W. Hawking ha dedicado buena parte de su trabajo al estudio de los agujeros negros. En su libro Historia del Tiempo explica cómo, en una estrella que se está colapsando, los conos luminosos que emite empiezan a curvarse en la superficie de la estrella
Al hacerse pequeña, el campo gravitatorio crece y los conos de luz se inclinan cada vez más, hasta que ya no pueden escapar. La luz se apaga y se vuelve negro.

Si un componente de una estrella binaria se convierte en agujero negro, toma material de su compañera. Cuando el remolino se acerca al agujero, se mueve tan deprisa que emite rayos X. Así, aunque no se puede ver, se puede detectar por sus efectos sobre la materia cercana.

Los agujeros negros no son eternos. Aunque no se escape ninguna radiación, parece que pueden hacerlo algunas partículas atómicas y subatómicas.

Alguien que observase la formación de un agujero negro desde el exterior, vería una estrella cada vez más pequeña y roja hasta que, finalmente, desaparecería. Su influencia gravitatoria, sin embargo, seguiría intacta.
Como ocurrió en el Big Bang, también en los agujeros negros se da una singularidad, es decir, las leyes físicas y la capacidad de predicción fallan. En consecuencia, ningún observador externo, si lo hubiese, podría ver qué ocurre dentro.

Las ecuaciones que intentan explicar una singularidad, como la que se da en los agujeros negros, han de tener en cuenta el espacio y el tiempo. Las singularidades se situarán siempre en el pasado del observador (como el Big Bang) o en su futuro (como los colapsos gravitatorios), pero nunca en el presente. Esta curiosa hipótesis se conoce con el nombre de censura cósmica.

domingo, 15 de marzo de 2015

Contelaciones

Fuente: astromia

Las estrellas que se pueden observar en una noche clara forman determinadas figuras que llamamos "constelaciones", y que sirven para localizar más fácilmente la posición de los astros. En total, hay 88 agrupaciones de estrellas que aparecen en la esfera celeste y que toman su nombre de figuras religiosas o mitológicas, animales u objetos. Este término también se refiere a áreas delimitadas de la esfera celeste que comprenden los grupos de estrellas con nombre.
Fuente: bitacoradegalileo

Los dibujos de constelaciones más antiguos que se conocen señalan que las constelaciones ya habían sido establecidas el 4000 a.C. Los sumerios le dieron el nombre a la constelación Acuario, en honor a su dios An, que derrama el agua de la inmortalidad sobre la Tierra. Los babilonios ya habían dividido el zodíaco en 12 signos iguales hacia el 450 a.C.
Las actuales constelaciones del hemisferio norte se diferencian poco de las que conocían los caldeos y los antiguos egipcios. Homero y Hesíodo mencionaron las constelaciones y el poeta griego Arato de Soli, dio una descripción en verso de 44 constelaciones en su Phaenomena. Tolomeo, astrónomo y matemático griego, en el Almagesto, describió 48 constelaciones, de las cuales, 47 se siguen conociendo por el mismo nombre.

Muchos otras culturas agruparon las estrellas en constelaciones, aunque no siempres se corresponden con las de Occidente. Sin embargo, algunas constelaciones chinas se parecen a las occidentales, lo que induce a pensar en la posibilidad de un origen común.

A finales del siglo XVI, los primeros exploradores europeos de los mares del Sur trazaron mapas del hemisferio austral. El navegante holandés Pieter Dirckz Keyser, que participó en la exploración de las Indias orientales en 1595 añadió nuevas constelaciones. Más tarde fueron añadidas otras constelaciones del hemisferio sur por el astrónomo alemán Johann Bayer,que publicó el primer atlas celeste extenso.

Muchos otros propusieron nuevas constelaciones, pero los astrónomos acordaron finalmente una lista de 88. No obstante, los límites de las constelaciones siguieron siendo tema de discusión hasta 1930, cuando la Unión Astronómica Internacional fijó dichos límites.
Para designar las aproximadamente 1.300 estrellas brillantes, se utiliza el genitivo del nombre de las constelaciones, precedido por una letra griega; este sistema fue introducido por Johann Bayer. Por ejemplo, a la famosa estrella Algol, en la constelación Perseo, se le llama Beta Persei.

Entre las constelaciones más conocidas se hallan las que se encuentran en el plano de la órbita de la Tierra sobre el fondo de las estrellas fijas. Son las constelaciones del Zodíaco. Ademas de estas, algunas muy conocidas son Cruz del Sur, visible desde el hemisferiosur, y Osa Mayor, visible desde el hemisferio Norte. Estas y otras constelaciones permiten ubicar la posición de importantes puntos de referencia como, por ejemplo, los polos celestes.
La mayor constelación de la esfera celeste es la de Hydra, que contiene 68 estrellas visibles a simple vista. La Cruz del Sur, por su parte, es la constelación más pequeña.